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AIPSTRACT

Some concepts available for interpreting dynamic fracture phenomena are reviewed.
These include the mechanical characterization of crack edge fields, energy variations as-
sociated with crack growth, and experimental observations relevant to the points raised.
More recently developed and still incomplete ideas on the influence of crack tip plasticity,
material strain rate sensitivity and three dimensional effects are also outlined.

Accesiol -or \

.......................... ....... .. :.. ... ..... ....1

I " .. . . . . . . .

I-.

* For presentation at the Tenth U. S. National Congress of Applied Mechanics, Austin,

TX, 1986 (to appear in the proceedings).



1. l F'RODUCTION

SDynamic fracture is a branch of the engineering science of fracture mechanics con-

cerned with fracture phenomena on a time scale for which inertial resistance of the material

to motion is significant. The deformable body typically contains a dominant crack or other

stress concentrating defect, and the phenomena of primary interest are those associated

with conditions for the onset of extension of a crack or its arrest. Material inertia can have

a significant effect in a variety of ways. Load transfer from the rapidly loaded boundary

of a body to the region of a crack edge can occur by means of stress waves. Likewise, a

rapidly running crack emits stress waves which can be geometrically reflected or scattered

back to the region of the crack. It is through such waves that a rapidly running crack

senses the nature of the imposed loI ing on the body through which it runs, as well as the

configuration of the body. Material inertia may also lead to effects more subtle than those

associated with load transfer. Crack tip fields are usually distorted from their equilibrium

forms during rapid crack growth. Inertial resistance to motion on a very small scale near

the edge of a crack may make the material appear more resistant to separation than it is

due to its strength alone. There is a wide range of physical mechanisms by which materials

separate on the scale of material microstructure and, in cases where multiple mechanisms

are competing, inertial effects can have an influence on which is operative.

There are many facets to the study of dynamic fracture viewed as an area of basic re-

search. Its theoretical underpinnings may be found among the basic concepts of continuum

mechanics and materials science, and it has borrowed heavily from the theories of fracture

under equilibrium conditions. A key element in the area is the identification of system

parameters that characterize the resistance of materials to fracture and the measurement

of these parameters for real materials. Experimental work in the area is extremely chal-

lenging because, typically, many observations must be made in a short period of time in

a way which does interfere with the process itself. Crack tip data are difficult to extract



from load point data due to the intervening stress waves and, furthermore, quantities of

fundamental interest are not measurab!e directly but instead must be inferred indirectly

through measurement of other quantities. A related point concerns the importance of

developing a clear understanding of the connection between the values of fracture charac-

terizing parameters and the physical mechanisms operative on the scale of microstructure

in the material. It is only through such understading that advances in the development of

fracture resistant materials can occur. Finally, analytical and/or computational modelling

of dynamic fracture phenomena has played a key role in developing insight into various

phenomena, in providing a means for interpretation of data, and in studying the influence

of competing effects in complex situations.

In the sections that follow, an overview of research in the mechanics of dynamic frac-

ture is given, with emphasis on some emerging issues in this branch of fracture mechanics.

Due to space constraints, important aspects of the field are not covered, particularly those

concerned with the influence of material microstructure on macroscopic fracture response

and with numerical simulation studies of dynamic fracture phenomena. Furthermore, ex-

perimental methods are given only a cursory treatment. Clearly, sustained progress in

the field will require proper balance among all aspects of phenomena related to dynamic

fracture of materials.

The fruits of research in this area have found application in studies of rapid crack

propagation and crack arrest in pressure vessels and piping systems, cleavage crack growth

in crystalline materials, dynamic earth faulting viewed as a fracture process, stress wave

emission from growing cracks as a diagnostic tool in material evaluation, quantitative

nondestructive inspection and evaluation of materials, and the erosion of material surfaces

by high speed particulate or droplet impact. The area continues to be rich in challenging

and pot ntially important problems. Some earlier reviews of the topic are presented in

[I,2,3,41.
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2. ELASTODYNAMIC CRACK TIP FIELDS

The first part of this article is concerned with infinitesimal deformation in a homoge-

neous and isotropic elastic material. All fields representing physical quantities are referred

to a set of cartesian coordinates (XI, X2 , X3) or (z, y, z) fixed in the undeformed body.

Standard index or vector notation is used. The displacement vector U- satisfies

c2VV - C-cV X V X ,1= a22/at2  (2.1)

where Cd and c. are the propagation speeds of plane dilatational and shear waves, respec-

tively, in the solid. This equation embodies Hooke's law and momentum balance, and

it should be replaced by a suitable integral form when dealing with fields for which the

derivatives do not exist. The Rayleigh wave speed is c,.

General Concepts

The Helmholtz representation of the displacement vector in terms of the scalar dilata-

tional potential 0 and the vector shear potential 1 is introduced, namely,

U = V+ V x 1. (2.2)

A displacement vector derived from potential functions according to (2.2) will satisfy (2.1)

if the potentials satisfy the wave equations

c V 2 0 - a20/a2 = 0 C2V 2 1 _2 a/ 2 = 0 (2.3)

and if 9P is divergence free, V. 1 = 0. The completeness of this representation has been

proved by Sternberg [5]. In the case of plane strain or plane stress, the vector 1 has a single

nonzero component in the direction perpendicular to the plane of deformation. Attention

will be focussed here on the case of plane strain.

Consider plane strain deformation in the Xl,x 2 -plane. Suppose that a planar crack
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occupies that part of the plane z2 = 0 for which z1 < t(t). The nature of mechanical fields

very close to the crack tip compared to distance to the nearest boundary or to the other

end of the crack is of primary interest for the moment, so that it is adequate to view the

crack as being semi-infinite and the body to be otherwise unbounded. The symmetries

U1 (XI, X2, t) = u1 (X1, -z 2 , t) and u2 (z 1 , X2 , t) = -u 2 (XI, -X2 , t) characterize the tensile

opening mode of deformation, or mode I in the conventional terminology of fracture me-

chanics, for the cracked solid. Other independent modes are analyzed in much the same

way as mode I. For points near the crack edge, it can be shown that the components of

stress ai have universal spatial dependence. In terms of polar coordinates r, 0 centered on

the moving crack tip with 0 0 coiiiciding with the x,-axis,

=i K!(t) (0, v) +O(i) as r-*0 (2.4)

where v = i(t) is the instantaneous speed of the crack tip. The result (2.4) may be obtained

by means of an interior asymptotic expansion of all fields about r = 0, and the angular

variation Ejj(0, v) is given explicitly by Freund and Clifton 16] for arbitrary i less than

the Rayleigh wave speed. The angular variation of the circumferential tensile stress and

the maximum shear stress for several crack tip speeds are shown in Fig. 2.1 and 2.2. The

crack tip particle velocity likewise may be expanded in powers of r around the crack tip

with the result that

Ou_ vK(t)
at E v U(8,v)+o(l) as r- o

where E is the elastic modulus of the material.

Several comments should be made about the result (2.4). For one thing, the asymp-

totic analysis leading to it yields terms more singular than inverse square root, but (2.4)

is the most singular contribution representing a state of bounded total energy, so the more

singular terms are ruled out on physical grounds. Further, it is noted that the only feature
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of the near tip field to vary from one particular situation to another is the scalar multiplier

KI(t), the so-called elastic stress intensity factor, which contains information about the

geometry of the body and the nature of the loading. The normalization of Eii consistent

with the common definition of stress intensity factor is E 2 2A(, v) = 1. The result thus gen-

eralizes the stress intensity factor concept of equilibrium fracture mechanics which was the

cornerstone of Irwin's pioneering contributions in this area [7]. Finally, it must be recog-

nized that a stress distribution which is singular at the crack tip is an abstract idealization.

The rationale for admitting the singular stress distribution in the study of fracture of real

materials is based on the univers-l spatial dependence of the crack tip stress field and on

the concept of small scale yielding. The small scale yielding hypothesis presumes that the

potentially large stresses in the vicinity of the crack edge are relieved through plastic flow,

or some other inelastic process, throughout a region which has lateral dimensions that are

small compared to the crack length and other body dimensions. Under these conditions,

the stress distribution in the elastic material surrounding the inelastic crack tip zone is

adequately described by the dominant singular term in the elasticity solution based on a

sharp elastic crack. This surrounding field is completely determined by the stress intensity

factor and, consequently, the stress intensity factor provides a one parameter characteri-

zation of the load level applied to the material in the inelastic crack tip zone. The stress

intensity facter itself does not provide information on the way in which the material in

this zone responds to the applied loading. While the actual size of any inelastic region can

be determined only through detailed analysis of the full deformation fields, it is clear that

the size must scale with the length (Kr/o'Y)2 where a. is the tensile yield strength of the

material.

Dynamic Stress Intensity Factor Solutions

In view of the central role of the stress intensity factor K1 (t) as a characterizing

parameter for mechanical fields near the edge of a crack, the relationship between Kr
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and the applied loading and/or configuration of a solid containing a crack is important

to understand. Analysis aimed at establishing this relationship for particular situations

has become a significant part of fracture mechanics. Indeed, application of the general

concepts in any particular case hinges on the ability to actually solve the mathematical

problem that has been formulated to describe the process of interest. For stress wave

loading of a stationary crack under two-dimensional conditions, a number of mathematical

techniques have been developed for extracting the time-dependent stress intensity factor

history. Among these methods are the approach based on integral transforms and the

Wiener-Hopf technique pioneered by deHoop [8], the method of homogeneous solutions

[91, the use of path-independent integrals of Laplace transformed fields [10], the dynamic

weight function method [11], and superposition of moving dislocations [12]. Each of these

methods has been applied in the analysis of the problem class being considered, namely,

dynamic loading of a mode I crack under plane strain conditions. Various extensions have

also been introduced. For example, Thau and Lu [131 have analyzed the diffraction of a

tensile pulse by a finite length crack in order to assess the effect of the first diffracted wave

on the local stress intensity factor.

In general, mathematical problems involving a characteristic length have been partic-

ularly unwieldy in this area and direct methods of analysis based on integral transforms or

homogeneous solutions cannot be applied. Some solutions have been obtained by indirect

methods, however. For example, the analysis by Freund [12] based on a dislocation super-

position scheme yielded the exact transient stress intensity factor history for the case of an

opposed pair of concentrated loads suddenly applied to the opposite crack faces at a fixed

distance from the crack tip. A particularly interesting feature of the solution is that, after

the Rayleigh wave generated at the load points reaches the crack tip, the stress intensity

factor immediately takes on a constant value equal to its final equilibrium value.

The study of mechanical fields near the edge of an advancing crack in a nominally

6



brittle solid was opened with the pioneering analysis of Yoffe [14]. She analyzed the case of

a mode I crack of fixed length gliding steadily through a body subjected to uniform remote

tension. While the problem is admittedly unrealistic, she drew conclusions based only on

those features that did not depend on the fictitious crack length. The steady motion of

a semi-infinite mode I crack was studied by Craggs [15] who noted that the asymptotic

crack tip field was the same as that found by Yoffe. The problem of steady growth of

a mode I crack along the centerline of an infinitely long strip subjected to uniform edge

conditions was analyzed by Nilsson 1161. Some of the objections to steady-state crack

growth analysis were overcome by Broberg [17], who analyzed the transient growth of a

mode I crack from zero initial length at constant rate in a tensile field, and by Baker

[18], who analyzed the transient extension of a semi-infinite mode I crack under the action

of suddenly applied uniform crack face pressure. Some of the pioneering steps toward

lifting the restriction to constant crack tip speed were taken by Kostrov [19] and Eshelby

[201 in their work on the nonuniform extensions of cracks in the antiplane shear mode, or

mode III in standard fracture mechanics terminology. They deduced exact stress intensity

factor solutions for a variety of loading situations. A particularly interesting observation

was made by Eshelby for nonsteady crack extension under time independent loading. He

showed that if a crack propagates under these conditions and then suddenly stops, an

equilibrium field is radiated out from the crack edge behind a wavefront traveling with the

shear wave speed. Furthermore, this equilibrium field is the equilibrium field for the applied

loads and instantaneous crack length, a truly remarkable result for a two-dimensional wave

propagation field.

Kostrov based his analysis on the Volterra integral representation of the solution

of the elementary wave equation is two dimensions, whereas Eshelby applied an obscure

theorem concerned with the electromagnetic radiation from a nonuniformly moving line

charge. Neither technique could be carried over tu the case of mode I, but Lshelby's

snlution provided a clue on a way to proceed. If it could be shown that an equilibrium
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field radiated out when a growing mode I crack suddenly stops, then a complete solution

for nonuniform motion could be built up as a sequence of many short start/stop segments.

Because of the presence of free surface Rayleigh waves, it was most unlikely that the same

strong result would carry over to the plane strain case. On the other hand, it was noted

that a weaker result would suffice, namely, that an equilibrium field radiated out along

the prospective fracture path when the crack stopped. It was established by Freund [21]

that this is indeed the case for time independent loading, and the result led to the exact

stress intensity for nonuniform crack growth under time-independent loading. Similar

results were subsequently obtained for time-dependent loading 122,23]. The general result

is summarized as follows: The stress intensity factor for mode I extension of a half plane

crack is given by a universal function of instantaneous crack tip speed k(i) times the stress

intensity factor appropriate for a crack of fixed length, equal to the instantaneous length,

subjected to the given applied loading, whether this loading is time independent or time

dependent. That is, the stress intensity factor K1 is given by

K 1 (tt,t) = k(i) Kr(t, ,0) (2.6)

The function describing k has a complicated form, but simple behavior. It decreases mono-

tonically from k(O) = 1 to k(c,) = 0. A function providing a reasonable approximation is

k(v) = (I - v/c,)/(l - 0.5v/c,). The result (2.6) was verified and extended by means of

more direct procedures by Kostrov [24] and Burridge [25].

Critical Stress Intensity Factor Criterion

The main implication of the observed role of the stress intensity factor as a charac-

terizing parameter is the following. Consider two bodies of the same material, but having

different hapes and/or having cracks of different size. Suppose that the two bodies are

loaded to result in the same mode of crack tip deformation (mode I, in the present case). If

the loading results in the same stress intensity factor in the two cases, then the material in
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the crack tip region is assumed to respond in the same way in the two cases. The foregoing

id' i exploited in engineering practice, for example, by measuring the stress intensity

factor at which a crack will begin to advance in a well-characterized laboratory specimen,

and then assuming that a cracked structure will experience crack growth at the same level

of stress intensity.

The engineering science of linear elastic fracture mechanics (LEFM), which has evolved

from this idea, has been profitably extended to situations in which material inertia plays

a significant role. Given the significance of the stress intensity factor as a characterizing

parameter for each mode of crack opening, a simple criterion for the onset of crack growth

is the following: A crack will begin to extend when the stress intensity factor has been

increased to a material specific value, usually called the fracture toughness of the material

and commonly denoted by K1 , for mode I plane strain deformation. For values of the

stress intensity factor smaller than the critical value there is no growth, and values larger

than the critical value are inaccessible. This is the Irwin criterion of LEFM ii. it simplest

form. It should be noted that such a criterion is a physical postulate on material response,

on the same level as the stress-strain relation or other physical postulate on which the

mathematical formulation is based. In the statement of this criterion, it should be em-

phasized that K, is a material parameter and that K1 (t) is a feature of the stress field.

The foregoing statement of the Irwin criterion may be applied without modification to the

study of fracture initiation in nominally elastic bodies subjected to stress wave loading

and dynamic crack propagation. In its simplest form, it has been assumed that a crack

edge will be stationary if KI(t) < K1 , for any loading history, but that the crack will

grow with some speed i(t) > 0 if K,(t) = Kr,. Values of stress intensity factor greater

than K1c are inaccessible. The criterion has been further generalized by hypothesizing

that that the critical level of stress intensity required to drive the fracture depends on the

instantaneous crack tip speed i(t) or possibly other instantaneous values of system pa-

rameters or their histories. The dependence of the critical stress intensity factor on speed
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is sometimes denoted by Kd(i), although the notation is not standard, and the material

response represented by Kid versus its arguments is called the dynamic fracture toughness.

3. TRANSIENT STRESS INTENSITY FACTOR HISTORY

In this section, the matter of actually calculating the transient stress intensity factor

history as a property of the stress distribution is discussed. Consider a body of elastic

material that contains a half plane crack but that is otherwise unbounded. In the present

instance, the material is stress free and at rest everywhere for t < 0, and the crack faces

are subjected to uniform normal pressure of magnitude o* for t > 0. For points near to

the crack face compared to distance to the crack edge, the transient field consists only of

a plane wave parallel to the crack face and traveling away from it at speed Cd. As this

plane dilatational wavefront passes a material point in its path, the component of stress

r,, (or 022) changes discontinuously from zero to -a* and the particle velocity aou./at
(or CIu 2 /8t) changes discontinuously from zero to ±*/pcd for ±y > 0.

Near the crack edge, on the other hand, the deformation field is more complex. A

nonuniform scattered field radiates out from the crack edge behind a cylindrical wavefront

(circular in two dimensions) of radius cdt that is centered on the crack edge. Due to the

coupling of dilatational and shear waves at a boundary, this scattered field also includes

a cylindrical shear wavefront of radius cot that is centered on the crack edge, plus the

associated plane fronted headwaves traveling at speed c,.

The process being described here involves neither a characteristic length nor a char-

acteristic time. Thus, the components of stress and particle velocity are homogeneous

functions x, y, t of degree zero. An immediate consequence of (2.4) is that, for points very

close to the crack edge compared to the distance to the nearest wavefront, say,

or., (X, O, t) Pd Ct , a ___'t < 1 (3.1)

¥ 10



where C1 is an undetermined dimensionless constant. In view of (3.1), the tensile stress

intensity factor is also known up to the constant C1 , that is,

Kt(t) = lim v '2_o 1 y(x,O,t) = Ctor*ja 2 (3.2)z-*4O+

Through a solution of the transient boundary value problem following the method of de-

Hoop [8], it is found that the dimensionless constant has the value C = \/2(1 -2,)/ir(1 -

v) where v is Poisson's ratio.

The stress intensity factor (3.2) was obtained for the case of crack face loading. How-

ever, it may be given another interpretation for the linear system. Consider again the

same configuration, but with the crack faces free of traction. Suppose that a plane tensile

pulse propagates toward the crack plane at speed cd. The front of the pulse is parallel

to the crack plane, and it carries a jump in stress a, from its initial value of zero to

+o*. The pulse arrives at the crack plane at time t = 0, and it is partially reflected and

partially scattered, or diffracted, upon reaching the crack. Aside from the uniform plane

wave, the field of the diffraction process is identical to that for the suddenly applied crack

face pressure. In particular, the relationship between the stress intensity factor and the

loading magnitude a* is identical in the two cases.

Suppose that the crack edge remains stationary at x = t(t) = 0 for some time after

the load begins to act, but at some later time t = r > 0 the crack edge begins to advance

in the z-direction at nonuniform speed i(t) < c,.. The time 7 is called the delay time. An

exact stress intensity factor solution for this situation has been provided by Freund [22],

with the result that

K(t) = lim 2_7"xaY(x,O,t) = k(i)Ctor* 22i dt. (3.3)

This result differs from the corresponding result for a stationary crack only tLrough the

dimensionless factor k(i) which is the universal function of instantaneous crack tip speed

11



introduced in (2.6).

Now, consider a tensile rectangular stress pulse of magnitude o'* and duration t*

normally incident on a traction free crack. If the crack does not extend, then it is clear

from (3.3) that the crack tip stress intensity factor will increase in proportion to VA for

0 < t < t, and it will decrease in proportion to V Ai- VF-t for t < t < oo. The variation

of Kt(t) without extension is shown in Fig. 3.1 as the solid line. The largest value of stress

intensity factor without extension is K(t*) = C1O* V2,/- , so the crack will grow only

if KI(t*) > Ktc. It is assumed that this is the case, and the simplest possible fracture

criterion, namely,

i(t) =0 with K1 (t) < KI, or i(t) > 0 with K1 (t) = K1, (3.4)

is adopted. It is observed that the fracture criterion is first satisfied at time t = ti where

1i KIC.o) (3.5)

This time is called the incubation time, and the crack will grow for t > ti. The fracture

criterion imposes the condition that

(Vrt if ti < t < VKIC=ktCo (ic (3.6)
t- V - ifrt < t t,

where the function k was introduced in (2.6) and

t, = (tI, + t*)2/4ti (3.7)

is the arrest time, that is, the time at which the decreasing Kt(t) passes the value Kt 0 ;

see Fig. 3.1. The relationship (3.6) is an ordinary differential equation for the position

of the crack tip t(t) as a function of time and, as such, it is an equation of motion for

the crack tip, analogous to the equation of motion for a particle in elementary mechanics.

This equation is subject to the initial condition t(0) = 0 and it applies during ti < t < ta.
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The features of the solution of (3.6) are evident. The crack tip begins to move at time

t = ti, it accelerates for ti < t < t*, it decelerates for t < t < t., and it arrests at time t0 .

This response is depicted in Fig. 3.2. Some features of (3.6) that are general and common to

virtually all elastodynamic crack models are noted. For one thing, the equation of motion

is a first-order ordinary differential for crack position as a function of time. If the analogy

with particle mechanics is pursued, this implies that the coefficient of the acceleration

term in the equation is zero, or that the crack has no effective mass. This should not be

interpreted as evidence that inertial effects are not important in the phenomenon. It simply

means that the crack velocity, rather than acceleration, varies directly with the driving

force. It also implies that the crack velocity may change discontinuously in time without

violating any physical laws. The equation of motion also indicates that, if the duration of

the loading pulse is indefinitely long, then the crack tip speed increases continuously toward

c, the Rayleigh wave speed of the material. In this sense, the Rayleigh wave speed is the

theoretical terminal velocity of a crack tip. In most actual crack growth situations, other

effects intervene before the crack speed approaches the theoretical limiting velocity. Finally,

if a material interface with no strength is characterized by the condition that K, = 0,

then the equation of motion indicates that a dynamic separation point propagates along

the interface only at the speed c,.

Three Dimensional Stress Intensity Factor History

A procedure for determining the stress intensity factor histories for a class of three

dimensional elastodynamic crack problems was recently introduced [26]. The geometrical

configuration is a half plane crack in an otherwise unbounded body, a configuration which

is invariant under translation in the direction of the crack edge. However, the crack faces

are subjected to tractions that result in a true three dimensional stress wave field and in a

variation of the transient stress intensity factor along the edge of the crack. The method is

based on integral transform methods with a special interpretation of the transformed fields.
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The procedure leads to exact results for stress intensity factor histories; unfortunately, it is

not possible to extract full three dimensional solutions. The problem used to introduce the

technique was the sudden application of a symmetric pair of line loads to the crack faces,

with the direction of the line being perpendicular to the edge of the crack. The opposed

line loads tend to open the crack, producing a mode I stress intensity factor history at each

point along the edge. The method has been extended to attack the problem of moving

loads on the crack faces by Ramirez [271 and the problem of transient crack growth at

constant speed through a time independent stress field by Champion 128].

4. ENERGY VARIATIONS DURING DYNAMIC CRACK GROWTH

Interest in the mechanical energy that is extracted from a deformable solid during

crack advance is an outgrowth of Griffith's original hypothesis that energy has to be sup-

plied to create new surface. A crack tip contour integral expression for dynamic energy

release rate was proposed by Atkinson and Eshelby [291, who argued that the form for dy-

namic growth should be the same as for quasi-static crack advance with the elastic energy

density replaced by the total internal energy density. The equivalent integral expression

for dynamic energy release rate in terms of crack tip stress and deformation fields was

subsequently derived directly from the field equations of elastodynamics by Kostrov and

Nikitin [30] and by Freund [31]. The result was obtained by enforcing instantaneous en-

ergy rate balance for the time-dependent region inside the boundaries of the body but

outside of a small loop surrounding and translating with the crack tip. By application of

Reynolds' transport theorem and the divergence theorem, an expression for the crack tip

energy flux through the small crack tip loop in the form of a line integral along the loop.

A more general result, including this elastodynamic energy release rate expression as a

special case, may be derived for arbitrary material response.

Consider crack growth in a two dimensional body in the Z1 ,Z2 -plane, with the crack
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in the plane z 2 = 0 and crack growth in the z1 -direction at instantaneous speed v. A

small contour r begins on one face of the crack, surrounds the crack tip, and ends on the

opposite face of the crack. The contour is fixed in size and orientation, and it translates

with the crack tip. As it does so, it sweeps out a tubular surface in space-time as the crack

grows. The steps outlined by Nakamura, Shih and Freund [321 lead to the result that

F(r) = J (Bu-- + (U + T)tn) dr (4.1)

is the instantaneous rate of energy flow out of the body through r, where T is the kinetic

energy density and U is the stress work density for any material response, namely,

0o a~ai at at8uU =j siat ,: dt', T= - (4.2)

and p is the mass density of the material. The first term in (4.1) is the rate of work of

the material outside of r on the material inside r, and the second term represents the

energy flux through r due to mass transport associated with crack motion. The general

result (4.1) underlies virtually all crack tip energy integrals that have been defined and

applied in fracture mechanics, in the sense that each is obtained from (4.1) by invoking

appropriate restrictions on material response (through U) and on crack tip motion. For

example, for equilibrium fields in nonlinear elastic material, it leads to Rice's J-integral

[33]. For steady crack growth, it leads to a path-independent integral considered in various

aspects by Hutchinson [34] and Willis [351. The implications of (4.1) for elastodynamic

crack growth will be considered next, and application in other situations will be considered

subsequently.

For a linear elastic material, U = aijpi,i and the energy released from the body

per unit crack advance in the z -direction is the limit of F()/lv as r is shrunk onto

the crack tip. It is obvious from the hyperbolic character of the governing equations that

F(F) cannot be a path-independent integral, in general. The limit is usually termed the
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dynamic energy release rate and is denoted by G. For the concept to have any fundamental

significance, it is necessary that the limit be independent of the shape of r, and this was

demonstrated for the near tip elastodynamic field by Freund [311. Because the near tip

distribution of mechanical fields is known explicitly for elastic response, the relationship

between G and the stress intensity factor may be established by evaluating the integral

(4.1), with the result that

1 - v

G= E A(v) K1 (4.3)

where v and E are the elastic constants of an isotropic solid and A(-) is a universal function

of the instantaneous crack tip speed v. The function A has the properties that A(O) = 1,

A'(0) = 0 and A(v) -+ o as v --- c. Thus, G > 0 for 0 < v < c,. The result (4.2) applies

for all mode I elastodynamic crack growth situations. Under the special condition that the

complete elastic field is time-independent as seem by an observer moving with the crack

tip, the integral F(r) is path-independent 129,361.

A specimen configuration that has been employed for crack propagation experiments

is the split rectangular plate known as the double cantilever beam. Because of its con-

figuration, the specimen has been analyzed by a strength of materials approach, whereby

the arms of the specimen are viewed as beams cantilevered at the crack tip end (and thus

the common name for it). The deformation and associated stress distribution obtained

by applying the usual assumptions of beam theory represent internally constrained plane

strain or plane stress fields, and the general energy flux expression may be applied directly

to compute energy release rate. Suppose that the plane of deformation is the z,y-plane,

that the crack is in the plane y = 0, and that the tip is at x = t(t). Then the contour r

in the plane of deformation begins on one traction free crack face at z = 1(t) - 0. It runs

along a cross section of one beam arm to the traction free boundary at y = h, along this

boundary until x = t(t) + 0, then along the cross section to y = -h, and it returns to the

other crack face in such a way that F has reflective symmetry with respect to the crack
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plane. Invoking the standard assumptions for an elastic Bernoulli Euler beam, it can be

shown through a direct application of (4.1) that the energy release rate is

G = 12(1 - v2 ) M(tt)/Eh3  (4.4)

where M(t, t) is the bending moment per unit thickness in each beam arm at the crack tip

end. If it is argued, as in the case of compliance methods of equilibrium fracture mechanics,

the the energy being supplied to the crack tip cross section is actually being absorbed at

the crack tip, then (4.2) yields an expression for the crack tip stress intensity factor for

the specimen in terms of the internal bending moment at x = t(t), namely,

K1 (t) = M(tt)j12/A(i)h 3 . (4.5)

At the level of the beam approximation, the singularity at the crack tip on the fracture

plane is a concentrated force. On the level of the plane elastic field, however, it is the

standard square root singular stress distribution. A number of similar connections between

strength of materials models and elastic field models were established in the article by

Freund [4].

It is noted briefly that because the tip of a growing crack is a sink of mechanical

energy, the standard proof of uniqueness of solutions for elastodynamics requires modifi-

cation. The uniqueness theorem is normally proved by showing that the rate of change

o mechanical energy for a difference solution is zero, so that if the difference solution

satisfies homogeneous initial and boundary conditions and the strain energy is positive

definite, then the difference solution remains zero. For a difference solution for a running

crack problem, the rate of change of mechanical energy can be shown to be equal to -G

[6]. Therefore, the uniqueness theorem is easily extended to such problems if 0 < v < c,.

However, solutions for crack speeds in the range cr < v < c. are not necessarily unique

because G < 0 there.
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The energy "lost" from a solid in a fracture mechanics description of dynamic crack

growth is not actually lost but, instead, it is simply not accounted for in the continuum

description of the process. A range of mechanisms of energy absorption at a crack tip

can be identified. For example, in simple cleavage of covalently bonded crystals, the

energy required to separate adjacent planes of atoms is roughly 1 J/m 2 . During cleavage

of crystals with ionic bonding or body centered cubic metallic crystals, crack growth is

usually accompanied by highly localized dislocation motion in the material and apparent

energies of fracture are on the order of 10 J/m 2 . For "cleavage" of polycrystalline iron or

"brittle" fracture of PMMA or similar polymer, a large portion of the energy consumed in

the process of fracture is dissipated in the necking down of ductile ligaments left behind

as the brittle fracture front advances through the material. In this case, the energy of

fracture may be on the order of 103 J/m 2 . For a high strength steel or aluminum alloy,

crack advance usually occurs by nucleation of microvoids in regions of high stress triaxiality

in the material and their ductile growth to coalescence. The energy dissipated in this

process may be as low as 104 J/M 2 , and it may be much higher. Finally, for crack growth

in very ductile materials and/or in thin sections with minimal triaxial constraint, crack

advance occurs by through-the-thickness shearing and the fracture energy may be almost

indefinitely large. The classification of mechanisms could be modified or refined in any

number of ways, of course.

A One-Dimensional Crack Growth Model

Analytical models of dynamic crack growth involving a single spatial dimension have

been developed in connection with dynamic fracture toughness testing by Kanninen [37],

Bilek and Burns [38] and Freund [39], in connection with seismic source modeling by

Knopoff et al [40] and Landoni and Knopoff [41], and in connection with peeling of a

bonded layer by Hellan [42]. Some of these models have been remarkably successful in

enhincing insight into the particular physical process of interest, and the few models for
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which complete mathematical solutions exist provide the rare opportunity to see all aspects

of a dynamic crack growth event in a common and relatively transparent framework. The

discussion here will focus on the model developed by Freund [39] in order to illustrate the

influence of reflected waves on crack growth in a double cantilever beam fracture specimen

by means of a simple shear beam model of the specimen. The model may be rephrased in

terms of the dynamics of an elastic string, an even simpler conceptual model, and it has

been analyzed with numerous variations from this point of view by Burridge and Keller

[431.

Consider a stretched elastic string lying along the positive z-axis. The string has mass

per unit length p and characteristic wave speed c. The transverse deflection is w(x, t), the

elastic strain from the undeflected configuration is -1 = Ow/Bz and the transverse particle

velocity is q/ = aw/Ot. Initially, the string is free of transverse loading in the interval

0 < z < 4, and is bonded to a rigid, flat surface for z > 4. A boundary condition in

the form of a condition on w(O, t), y(O, t), or a linear combination of the two is required

and specific cases will be considered. Finally, suppose that the string is initially deflected

but at rest, so that w(z,O) = wo(z) and (z,0) = 0 where wo(z) is specified. At time

t !- 0, the string begins to peel away from the surface, so that at some later time t > 0

the free length is 0 < z < t(t). Thus, the field equations are to be satisfied in the time-

dependent interval 0 < z < 1(t) subject to the stated initial and boundary conditions. If

1(t) is specified, then the solution of the governing differential is subject to the "crack tip"

condition that w(t(t), t) = 0 or, in rate form, that iy + P1 = 0 at x = 1(t). Actually, the

field equations and boundary conditions can be satisfied for a host of crack motions 1(t). If

a crack growth criterion is specified at z = 1(t), then a part of the solution procedure is to

find that particular crack motion t(t) for which the growth criterion is satisfied pointwise

in time. Some cases of crack motion will be discussed after the issues of crack tip singular

field and energy release rate have been considered within the framework of the dynamic

string model.
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Ahead of the crack tip the strain and particle velocity are clearly zero, whereas behind

the tip they have nonzero values, in general. Thus, the crack tip carries a propagating

discontinuity in strain and particle velocity. Because the equation governing motion of

the string is the elementary wave equation, discontinuities propagate freely only at the

characteristic wave speed of the string c. But the speed of the crack tip i(t) is not restricted

to be always equal to c, so that the propagating crack tip must carry a momentum source

or sink. In view of the fact that the only degree of freedom is the transverse deflection,

the momentum source must lue a generalized force that is work conjugate to w, namely

a concentrated force acting at z = 1(t) and travelling with that point. This is the crack

tip singular field for this simple structure. The elastic energy density and kinetic energy

density for the string are pc 2 I and 1 2 . Application of the energy flux integral (4.1)

for a contour surrounding the portion of the string at z = 1(t) yields

F =G = -pC 2 '7? - 1pc2_2- -..p/ (4.6)

and, in light of the kinematic boundary condition at z = 1(t),

G = pc2 (1 _-.1/C 2 )'g(1,t)2  (4.7)

Other ways to derive the result (4.7) are outlined by Freund 1441.

The crack growth criterion that is adopted here for purposes of illustration is the

energy balance criterion, according to which the crack must propagate in such a way that

the energy release rate G is always equal to the specific fracture energy G., a material

characterizing parameter that is assumed to be constant for simplicity. Consider equilib-

rium fields for the moment. If the boundary condition at x = 0 is that the displacement

is held fixed at the level w° (the fixed grip condition), then the uniform strain for any

value of t is w*/t and the elastic energy stored in the structure is 1pc2 (w )2/. There is

no external potential energy in this case. The energy consumed in fracture, on the other
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hand, is G,(L - 4). The total energy thus has a stationary point at t = pc2(W*)2/2G,

corresponding to an equilibrium state that is also a state of incipient fracture. If the initial

length t is greater than this critical length for a given w" then this value of imposed

displacement is not large enough to induce crack growth. If, on the other hand, the initial

length 4 is less than this critical length for a given w° then the energy released in a small

excursion of the system from its initial configuration under equilibrium conditions exceeds

the energy consumed in the fracture process, so that a state of equilibrium cannot be

maintained. Inertial effects will be called into play to balance overall momentum of the

system.

As a second example, suppose that the boundary condition at z = 0 is that the

transverse force is held fixed at the level pc2-l (dead weight loading). The uniform strain

for any value of t is then 'y* and the elastic energy stored in the structure is 1pC2 (-Y) 2 t.

The external potential energy is -pc 2 ("y*) 2L As before, the energy consumed in fracture

is G,(t - 4). The system is thus in equilibrium and at a point of incipient crack growth

if (-y*)2 = 2Go/pc2 . If the imposed value of -t° is not large enough in magnitude to

satisfy this critical condition, then crack growth will not occur. If, on the other hand,

the magnitude is too large to satisfy the critical condition, then equilibrium conditions

cannot be maintained under any circumstances and, again, inertial effects will be called

into play. Other boundary conditions may be considered for this simple system, but these

two cases illustrate the circumstances under which inertial effects become significant in a

crack growth process. For example, the influence of loading chain stiffness may be pursued

by specifying a linear relationship between load and displacement at z = 0 [44].

Consider the former case (fixed grip condition). However, suppose that the crack tip

is initially slightly blunted so that the level of applied end displacement w* is greater than

that required to initiate growth of a sharp crack with initial length 4. To be specific,

suppose that the initial energy release rate G* = pc2 (w*/4) 2 exceeds the level required
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to sustain growth of a sharp crack by a factor n > 1. Given a value of this factor, called

the bluntness parameter, the relation n = G*/G, actually specifies the end displacement

w* which must be imposed to initiate dynamic crack growth. The crack propagates with

G= Go, or 1=0 ifG < G.

From a solution of the differential equation governing motion for arbitrary 1(t) by the

method of characteristics, say, it can be shown that y(t, t) = 'y,/(1 + i1/c) up until the

wave emitted from the crack tip at the onset of growth reflects back onto the tip from the

fixed end of the string. The crack propagation condition then requires that

Co = C*(I - 2 /c2 )/(1 + i/c)2  (4.8)

This is again an equation of motion for the crack tip deduced from a physical postulate

on the nature of the fracture process. If G* is eliminated in favor of n, it is found that the

crack speed has the constant value (n - 1)/(n + 1) before the first reflected wave overtakes

the crack tip. If the procedure is pursued one step further, it is found that the first

reflected wave reduces the crack tip strain to a level below that required to sustain crack

grpwth. The crack thus arrests instantaneously, and arrest is accompanied by a negative

jump in the crack tip energy release rate. The arrest length of the crack is n4, which is

substantially larger than the equilibrium length of N/in? for the specified displacement w.

Other situations involving G, dependent on crack speed were considered in [39].

Because of the simplicity of the solution, the strain energy and kinetic energy as

functions of crack length can be calculated easily, and a typical result is shown in Fig.

4.1 for n = 4. For this case, the crack speed up to arrest is 3c/5, the arrest length is

4., and the crack length when the unloading wave reflects from the end z = 0 is 84/5.

The interpretation of the energy variations is straightforward. At the instant of fracture,

the strain magnitude at the crack tip is reduced from the supercritical value to the value

necessary to satisfy the fracture criterion, and this reduction in strain implies a reduction
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in strain energy Eu. Because of the rate of this reduction in strain, however, the inertia

of the material comes into play. The value of strain magnitude is reduced behind the

wave traveling from the tip to the fixed end of the string, so the strain energy decreases

and the kinetic energy Elr increases as the wave engulfs more and more of the string

length. Because energy is being drawn from the body at the crack tip, the decrease in

Eu is not balanced by the increase in E.. When the stress wave reflects from the fixed

end z = 0, the fixed displacement condition requires that it do so in just the right way

to cancel the particle velocity. Thus, as the wave reflects back onto itself, the particle

velocity q is reduced to zero and the strain is further reduced behind the reflected wave.

Thus, the kinetic energy decreases after wave reflection, and the strain energy decreases

but at a slower rate than before reflection. It should be noted that until the reflected

wave overtakes the crack tip, the crack response is as though it were propagating ;n an

unbounded body, that is, the crack tip shows no influence of the boundary at z = 0. The

first influence of the fixed boundary on the crack tip arrives with the reflected wave which,

as already noted for this simple structure, causes an instantaneous arrest. In effect, by the

time that the stress wave communicates to the crack tip that the applied end displacement

w* is appropriate to maintain a certain equilibrium length for a sharp crack, the crack has

already grown to a length greater than this equilibrium length. The '-ost arrest state is

thus sub-critical.

The string model does not provide an adequate model for analysis of dynamic frac-

ture in real structures. However, the physical insight developed through study of simple

and transparent models is helpful in considering more complex situations or in devising

approximate models.

5. PLASTICITY EFFECTS IN DYNAMIC CRACK PROPAGATION

In cases where the extent of plastic flow is sufficiently great to preclude the small scale
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yielding assumption, or where the phenomenon of interest is exhibited on the scale of the

crack edge plastic zone, the post yield response of the material must be taken into account.

Few general results have been obtained for dynamic crack growth in nonlinear materials.

Some recent studies are described in this section.

An Exact Result for Antiplane Shear

In an effort to explain the dependence of dynamic fracture toughness on crack tip

speed observed in experiments on a high strength steel, the steady-state growth of a crack

at speed v in the the antiplane shear mode, or mode III in fracture mechanics terminology,

under small scale yielding conditions was analyzed by Freund and Douglas [451 and by

Dunayevsky and Achenbach (461. The field equations governing this process include the

equation of momentum balance, the strain-displacement relations, and the condition that

the stress distribution far from the crack edge must be the same as the near tip stress

distribution in a corresponding elastic problem. For elastic-ideally plastic response of the

material, the stress state is assumed to lie on the Mises yield locus, a circle of radius

,r. in the plane of rectangular stress components, and the stress and strain are related

through the incremental Prandtl-Reuss flow rule. The material is linearly elastic with

shear modulus p outside of plastically deforming regions.

With a view toward deriving a theoretical relationship between the crack tip speed

and the imposed stress intensity factor required to sustain this speed according to a critical

plastic strain crack growth criterion, attention was focussed on the strain distribution on

the crack line within the active plastic zone, and the influence of material inertia on this

stress distribution. It was found that the distribution of shear strain on this line, say

'y,(z,0) in crack tip rectangular coordinates, could be determined exactly in terms of the
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plastic zone size r. in the implicit form

'1Z(X ) I ( i m2  )\
-r I2m M

1(-h,) f0(1t)/(1+4 t) _____
m

____

X = ro I(m) ' (t) = d(1-m)/ s

where m = v/c+.

The exact result (5.1) resolved a long standing paradox concerning mode III crack tip

fields. Rice [47] showed that the near tip distribution of strain y, (z, 0) for steady growth

of a crack under equilibrium conditions was singular as n 2 (z/ro) as x/to --+ 0. On the

other hand, Slepyan [48] showed that the asymptotic distribution for any m > 0 was of the

form (m- - 1) £n (z/r) as x/r --+ 0. These two features could be verified by examining

the behavior of the exact solution for dynamic growth (5.1) under the condition m -+ 0 for

any nonzero value of z/ro and under the condition that z/ro --. 0 for any nonzero value

of m, respectively. The resolution of the paradox was found, however, in the observation

that Slepyan's asymptotic solution is valid only if

(/r)2m/(+M) << (5.2)

Thus, the apparent inconsistency arises from the fact that the asymptotic result due to

Slepyan is valid over a region that becomes vanishingly small as m -+ 0.

Graphs of the plastic strain distribution on the crack line in the active plastic zone

are shown in Fig. 5.1 for m = 0, 0.3, 0.5. The plastic strain is singular in each case, as has

already been noted. The most significant observation concerns the influence of material

inertia on the strain distribution. An increase in crack speed results in a substantial

reduction of the level in plastic strain for a fixed fractional distance from the crack tip to

the elastic-plastic boundary. Therefore, if a local ductile crack growth criterion is imposed,

then it would appear that the fracture resistance or toughness would necessarily increase
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with increasing crack tip speed. To quantify this idea, the fracture criterion proposed by

McClintock and Irwin [49] was adopted. According to this criterion, a crack will grow with

a critical value of plastic strain at a point on the crack line at a characteristic distance

ahead of the tip. The crack will not grow for levels of plastic strain at this point below

the critical level, and levels of plastic strain greater than the critical level are inaccessible.

To make a connection between the plastic strain in the active plastic zone and the remote

loading, a relationship between the size of the plastic zone and the remote applied stress

intensity factor is required. This can be provided only through a complete solution of

the problem, and it was obtained for the case of mode III by Freund and Douglas on the

basis of a full field numerical solution of the governing equations. The resulting theoretical

fracture toughness KIJ1d versus crack speed curves are shown in Fig. 5.2 for three levels

of the critical plastic strain y, = 2r./p, 5ro//, 10rc/p. The critical distance has been

eliminated in favor of Kr11 ,, the level of applied stress intensity required to satisfy the

same criterion for a stationary crack in the same material under equilibrium conditions.

The different intercepts at m = 0 indicate an increasing propensity for stable crack growth

with increasing toughness, and the intercept values correspond to the so-called steady state

toughness values of the theory of stable crack growth.

The plots in Fig. 5.2 have some common general features. The ratio of KZZaIKIZZZ

is a monotonically increasing function of crack speed m which takes on large values for

moderate values of m. Although there is no unambiguous way to associate a terminal

velocity with these results, they suggest a maximum attainable velocity well below the

elastic wave speed of the material. It is emphasized that the variation of toughness with

crack speed in Fig. 5.2 is due to inertial effects alone. The material response is indepen-

dent of rate of deformation, and the crack growth criterion that is enforced involves no

characteristic time. If inertial effects were neglected, the calculated toughness would be

completely independent of speed. The question of the influence of material rate sensitivity

on this relationship is a separate issue.
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The equivalent plane strain problem of dynamic crack growth in an elastic-ideally

plastic material has not been so fully developed. However, a numerical calculation leading

to a fracture toughness versus crack speed relationship, analogous to Fig. 5.2, has been

described by Lam and Freund [50]. They adopted the critical crack tip opening angle

growth criterion and derived results for mode I on the basis of the Mises yield condition

and J2 flow theory of plasticity that are quite similar in general form to those shown for

mode III.

Viscoplastic Material Response

Consider steady crack growth in an elastic-plastic material for which the flow stress

depends on the rate of deformation. The particular material model known as the over-

stress power law model has been considered by a number of authors. According to this

idealization, the plastic strain rate in simple shear P depends on the corresponding shear

stress r through

Y= it + . {(r - rt)/Ip} '  for r > rt (5.3)

where yt is the threshold strain rate for this description, or the plastic strain rate when

r rt. The description also includes the elastic shear modulus p, the viscosity parameter

'yo, and the exponent n. A common special case is based on the assumption that the

slow loading response of the material is elastic-ideally plastic and that all inelastic strain

is accumulated according to (5.3). For this case, it = 0 and rt is the slow loading flow

stress 7o. For other purposes, it is assumed that (5.3) provides a description of material

response only for high plastic strain rates, in excess of the transition plastic strain rate it

and the corresponding transition stress level -t. For low or moderate plastic strain rates,

the variation of plastic strain rate with stress is weaker than in (5.3), and a common form

for the dependence is (cf. Frost and Ashby [51])

= g (r) exp{-g2r)}) (5.4)
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where 91 and g0 are algebraic functions. The marked difference between response at

low or moderate plastic strain rates and at high strain rates may be due to a change

in fundamental mechanism of plastic deformation with increasing rate, or it may be a

structure induced transition. For present purposes, it is sufficient to regard the difference

as an empirical observation. The two forms of constitutive laws (5.3) and (5.4) can lead

to quite different results in analysis of crack tip fields and, indeed, the form (5.3) leads to

fundamentally different results for different values of the exponent n.

Lo [52] extended some earlier work on the asymptotic field for steady quasistatic crack

growth in an elastic-viscoplastic material by Hui and Riedel [531 to included inertial effects.

They adopted the multiaxial version of (5.3) with it = 0 and "t = to describe inelastic

response, with no special provision for unloading. They showed that for values of the

exponent n less than 3, the asymptotic stress field is the elastic stress field. For values

of n greater than 3, on the other hand, Lo constructed an asymptotic field having the

same remarkable feature of complete autonomy found by Hui and Riedel, that is, it show

no dependence on the level of remote loading. For steady antiplane shear mode III crack

growth, Lo found the radial dependence of the inelastic strain on the crack line ahead of

the tip to be

=(z, 0) P (n,- 1) (Vljox)'I (n-')TL.(,,/C.) (5.5)

where the dependence of the amplitude factor TL on crack speed is given graphically by

Lo, who also analyzed the corresponding plane strain problem. Note that as n --+ oo

the plastic strain singularity becomes logarithmic. The full field solution for this problem

under small scale yielding condit;ons was determined numerically by Freund and Douglas

[54]. The numerical results showed i. plastic strain singularity much stronger than for

the rate independent case, and it appeared from the numerical results that the domain

of dominance of the asymptotic field within the crack tip plastic zone expanded with

increasing crack tip speed. These observations are consistent with (5.5).
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The problem of steady growth of an antiplane shear crack in a strain rate sensitive

elastic-plastic material was re-examined in a study by Yang and Freund [55]. The problem

considered was the same as that studied by Lo [521 except that re was taken to be the

slow loading yield stress and the material was assumed to respond elastically with the

initial shear modulus if it was unloaded. It was concluded in the earlier work on this

problem that if the possibility of an elastic region near the crack tip was not considered

then the asymptotic field was completely autonomous and the asymptotic solution could

not be reduced to the generally accepted rate independent limit as the rate sensitivity of

the material vanished. It was shown by Yang and Freund that if the possibility of elastic

unloading was admitted in the formulation, then the asymptotic crack tip field does indeed

approach the correct rate independent limit as the rate sensitivity vanishes. Furthermore,

the existence of an elastic region at the crack tip provides a path for communication

between the crack tip region and the remote loading, so that the crack tip field involves

an undetermined parameter that can be determined only from remote fields.

High Strain Rate Crack Growth

A particularly interesting class of dynamic fracture problems are those concerned with

crack growth in materials that may or may not experience rapid growth of a sharp cleavage

crack, depending on the conditions of temperature, stress state and rate of loading. These

materials may fracture by either a brittle or ductile mechanism on the microscale, and the

focus is on establishing conditions for one or the other mode to dominate. The phenomenon

is most commonly observed in ferritic steels. Such materials show a dependence of flow

stress on strain rate, and the strain rates experienced by a material particle in the path

of an advancing crack are potentially enormous. Consequently, the mechanics of rapid

growth of a sharp macroscopic crack in an elastic-viscoplastic material that exhibits a

fairly strong variation of flow stress with strain rate has been of interest in recent years.

The general features of the process as experienced by a material particle on or near the
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fracture path are straight forward. As the edge of a growing crack approaches, the stress

magnitude tends to increase there due to the stress concentrating effect of the crack edge.

The material responds by flowing at a rate related to the stress level in order to mitigate

the influence of the crack edge. It appears that the essence of cleavage crack growth is

the ability to elevate the stress to a critical level before plastic flow can accumulate to

defeat the influence of the crack tip. In terms of the mechanical fields near the edge of an

advancing crack, the rate of stress increase is determined by the elastic strain rate, while

the rate of crack tip blunting is determined by the plastic strain rate. Thus, an equivalent

observation is that the elastic strain rate near the crack edge must dominate the plastic

strain rate for sustained cleavage.

The problem has been studied from this point of view by Freund and Hutchinson [56].

They adopted the constitutive description (5.3,4) with n = 1. This is indeed a situation

for which the near tip elastic strain rate dominates the plastic strain rate. Through an

approximate analysis, conditions necessary for a crack to run at high velocity in terms

of constitutive properties of the material, the rate of crack growth, and the overall crack

driving force were extracted under small yielding conditions.

Consider the crack gliding along through the elastic-viscoplastic material under plane

strain conditions. At points far from the crack edge, the material remains elastic and

the stress distribution is given in terms of the applied stress intensity factor K by (2.4).

Equivalently, the influence of the applied loading may be specified by the rate of mechanical

energy flow into the crack tip region from remote points G, and these two measures are

related by means of (4.3). For points near the crack edge the potentially large stresses

are relieved through plastic flow, and a permanently deformed but unloaded wake region

is left behind the advancing plastic zone along the crack flanks. For material particles in

the outer portion of the active plastic zone the rate of plastic straining is expected to be

in the low or moderate strain rate range, whereas for particles close to the crack edge,
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the response is modelled by the constitutive law (5.3) with n = 1. The stress distribution

within this region then also has the form (2.4) but with a stress intensity factor different

from the remote stress intensity factor. The crack tip stress intensity factor, say Krtip,

is assumed to control the cleavage growth process. The influence of the remote loading

is screened from the crack tip by the intervening plastic zone, and the main purpose of

the analysis is to determine the relationship between the remote loading and the crack tip

field. For present purposes, it is assumed that the crack grows as a cleavage crack with a

fixed level of local energy release rate, say G,, p. The question then concerns the conditions

under which enough energy can be supplied remotely to sustain the level of energy release

rate Gtip at the crack tip.

Recall that the energy flux integral (4.1) is path independent for any material response

if the mechanical fields are steady, as in the present case. Thus, the matter of relating the

applied G to Gti P was pursued by enforcing an overall energy rate balance by means of

this integral. The balance may be cast into the form

Gtj = G - - oij dA - U* dy (5.6)

where A is the area of the active plastic zone in the plane of deformation, h is the thickness

of the plastic wake far behind the crack tip, and U* is the residual elastic strain energy

density trapped in the remote wake. This relation simply states that the energy being

released from the body at the crack tip is the energy flowing into the crack tip region

reduced by the energy dissipated through plastic flow in the plastic zone, and further

reduced by the energy trapped in the wake due to incompatible plastic strains. The

expression is exact.

Through several approximations, the complete energy balance (5.6) was reduced to

the remarkably simple form

G/Gip = I +- D(r)P (5.7)
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where the dimensionless parameter P is 'j6V1-&pGti(1 + 2jg1/-oirt)/37"3 and D(m) is a

dimensionless function of crack tip speed m = v/cr. P, is a monotonically increasing

function of temperature for steels with values in the range from about 0 to 10 as tempera-

ture varies from OK to about 400 K. The function D(m) is asymptotically unbounded as

m -* 0 and m -- 1, and it has a minimum at an intermediate crack tip speed. A graph of

D(m) is shown in Fig. 5.3.

For any given value of temperature or, equivalently, for any value of Pc, the graph in

Fig. 5.3 gives the locus of pairs G, v for which steady state propagation of a sharp crack can

be sustained. The implication is that if a cleavage crack can be initiated for a pair G, v that

is above the curve, then the crack will accelerate to a state on the stable branch of the curve.

If the driving force diminishes as the crack advances, or if the local material temperature

increases as the crack advances, then the state pair will move toward the minimum point

on the curve. If the driving force is further decreased, or if the temperature is further

increased, then further growth of a sharp cleavage crack cannot be sustained according

to the model. The implication is that the crack will arrest abruptly from a fair!y large

speed, and a plastic zone will then grow from the arrested crack. Further crack growth

is possible if either a ductile growth criterion can be met or if cleavage can be reinitiated

through strain hardening in the evolving plastic zone. The details of the model have been

refined through full numerical solution of the problem [571, but the essential features have

not changed with more precise analysis.

6. EXPERIMENTAL OBSERVATIONS

The subject of experimental methods and results is far too vast and substantive to

be summarized with balance here. Instead, some recent experimental findings that are

connected in one way or another with the theoretical ideas introduced in the foregoing

sections are briefly mentioned.
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The initiation of crack growth resulting from loading a planar crack by means of a

plane tensile pulse of finite duration was studied by Shockey, Kalthoff and Erlich [58]. This

was achieved by loading disks of a brittle epoxy with well characterized internal cracks in

a plate impact device. The amplitude and duration of the loading pulse and the size of

the internal cracks were controlled. It was found that the attainment of a critical stress

intensity factor level was not sufficient to initiate growth of the internal cracks. Instead,

they reported that it was necessary for the dynamic stress intensity factor to exceed the

fracture toughness for some short time before crack growth would commence.

The same issue of initiation of crack growth due to pulse loading in a material due

to stress pulse loading was studied by Smith and Knauss [591 who simulated the situation

of a semi-infinite crack in an unbounded body. Their specimen was a sheet of the brittle

polymer Hlomalite-100, large enough so that waves reflected from the outer boundaries

returned only after the experiment was over. A sharp crack was cut into the sheet from

one edge and a copper ribbon was folded over into the cut. A large stored electrical

charge was then discharged through the ribbon, and the resulting induced mechanical

forces provided essentially uniform pressure loading on the crack faces. They also found

that the apparent level of stress intensity at onset of crack growth seemed to exceed the

fracture toughness, with the difference increasing with the intensity of crack face pressure.

The experiment was refined and new data were reported subsequently by Ravi-Chandar

and Knauss [60]. In both cases, the crack tip stress intensity factor was measured directly

by means of the shadow spot method in transmission mode for the transparent material.

Ravi-Chandar and Knauss [611 modified their set-up to simulate the situation of an

opposed pair of point loads acting on opposite crack faces as analyzed by Freund [13].

Again, the transient stress intensity factor was measured in a large sheet of Homalite-100

by means of the optical shadow spot method, and the experimental results and theoretical

prediction were in good agreement. A similar situation was studied by Kim [621 who used
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a novel optical method of measurement of the transient stress intensity factor history to

verify some rather unusual features in the analytical solution of the model problem. Both

Ravi-Chandar and Knauss [61] and Kim [62] also studied the crack propagation phase that

followed initiation in their experiments.

An experiment has been developed by Ravi-Chandran and Clifton [63] to permit the

study of fracture initiation and crack propagation in metal specimens under intense stress

pulse loading. The specimen is in the form of a disk with a midplane fatigue crack grown

in so that its edge is on a diameter of the disk. The specimen is impacted by a flyer plate

in a gas gun which produces a compressive plane pulse that travels through the plane

of the closed crack without modification. The pulse reflects as a tensile pulse from the

traction free back face of the specimen and causes fracture initiation within a few hundred

nanoseconds of its arrival at the crack plane. The configuration has the feature of being

a half plane crack in an unbounded body near the center of the specimen, at least until

unloading waves from the boundaries penetrate this region. The amplitude of the stress

pulse is determined by the impact velocity and the duration of the pulse is determined by

the thickness of the flyer plate. Thus, the situation is a realization of the model discussed

in section 3 above. Preliminary experiments done with 4340 steel specimens in a very

hard condition (Rc = 55) suggest that crack speeds that are a significant fraction of the

Rayleigh wave speed of the material can be achieved.

Jumps in stress intensity factor showing the general trend deduced from analysis of

crack propagation and arrest in the string model have been observed experimentally by

Kalthoff, Winkler and Beinert [64] in double cantilever beam specimens of a brittle plastic

material, Araldite B. The specimens were loaded quasi-statically in the wedge loading

arrangement, and the stress intensity factor history was monitored by means of the optical

shadow spot method. The initial crack tip was slightly blunted, and the sharp crack that

grew from the blunted pre-crack experienced a decreasing driving force as it advanced.
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The crack speed did not remain constant up to arrest as predicted by the string model, of

course, but it did remain relatively constant for some time, gradually decelerating before

arrest. The experiments played an important role in dynamic fracture research because

they showed conclusively that specimen inertia can have a significant role in the dynamic

crack growth process.

Some data on the dynamic fracture toughness of metals during rapid crack growth

are available. Rosakis, Duffy and Freund 1651 used the optical shadow spot method in

reflection mode to measure the prevailing stress intensity factor during rapid crack growth

in 4340 steel hardened to Rc = 45. This is a relatively strain rate insensitive material

with very little strain hardening, so that the material may presumably be modeled as

elastic-ideally plastic. The observed toughness varied little with crack speed for speeds up

to about 600 to 700m/s, and thereafter the toughness increased sharply with increasing

crack tip speed. The general form of the toughness versus speed data was similar to the

theoretical prediction based on the numerical simulation reported by Lam and Freund [501,

lending support to the view that material inertia on the scale of the crack tip plastic zone

has an important influence on the perceived dynamic fracture toughness. Similar data

were reported by Kobayashi and Dally [661 who made photoelastic measurements of the

crack tip stress field by means of a birefringent coating on the specimen. Data on crack

propagation and arrest in steels were reported by Dahlberg, Nilsson and Brickstad [67].

Important experiments on crack propagation and arrest in steel specimens are cur-

rently being carried out by deWit and Fields [68). Their specimens are enormous single

edge notched plates loaded in tension. The growing crack thus experiences an increasing

driving force as it advances through the plate. A temperature gradient is also established

in the specimen so that the crack grows from the cold side of the specimen toward the

warm side. Based on the presumption that the material becomes tougher as the temper-

ature is increased, the crack also experiences increasing resistance as it advances through
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the plate. The specimen material is A533B pressure vessel steel, which is both very ductile

and strain rate sensitive. In the experiments, the fracture initiates as a cleavage fracture

and propagates at high speed through the specimen into material of increasing toughness.

The crack then arrests abruptly in material whose temperature is above the nil ductility

temperature for the material based on Charpy tests. A large plastic zone grows from the

arrested crack edge, and cleavage crack growth is occasionally reinitiated. The essential

features of the experiment appear to be consistent with the model of high strain rate crack

growth discussed in section 5, and this model appears to provide a conceptual framework

for interpretation of the phenomenon. An analysis of rapid crack growth in a rate depen-

dent plastic solid has also been carried out by Brickstad [69] in order to interpret some

experiments on a high strength steel.
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